Transverse Wave Motion
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Concept of Plane wave
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A typical representation of a wave propagating in

space

The propagating wave causing the

Individual oscillators in the medium
, to oscillate

Overall oscillation of the oscillators with the
same phase in the same plane forms the travelling
plane wave.

Note : each color represents a different phase of
the wave.




Veloclties 1n wave motion

For a mechanical wave, the individual oscillators which make up the medium do
not progress through the medium with the waves.

*The three velocities in wave motion are
1. The particle velocity
2. The wave or phase velocity
3. The group velocity

*For a monochromatic wave, the group velocity and the wave velocity are
identical.



Example of the group velocity
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« Propagation of a light pulse in a dispersive medium. Note that the phase fronts of different
frequency components propagate with different velocities, and the pulse propagates with the
group velocity, which is lower than all the phase velocities;

« No temporal broadening due to the propagation taking place in a nondispersive medium.


https://www.rp-photonics.com/group_velocity.html

Group velocity dispersion is the variation

of group velocity with wavelength

* White light pulse
consists of an infinite
fine spectrum of
frequencies and moving
with a group velocity.

* The wave velocity of
each wavelength in the
group Is different.

* The phenomenon is
known as dispersion.

GVD means that the group velocity will be different for different
wavelengths in the pulse. So GVD will lengthen a pulse in time.

(GVD = Group Velocity

Dispersion
Because short pulses have such large ranges of wavelengths, P )

GVD is a bigger issue than for nearly monochromatic light. 28




Example of dispersion
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The index of refraction for a glass material changing over the visible wavelength spectrum. The use of an optical prism shows
the effect of this change index across the visible spectrum as white light 1s split into individual wavelengths and colors.



http://www.koppglass.com/blog/optical-properties-of-glass-how-light-and-glass-interact/

The transverse wave equation on a string

A very short section of a uniform

& i . . .
d:pla-:ement //T"i/ﬂ/:d: string has a vertical displacement.

*The wave equation relates the vertical
displacement y to time t and position X.

String
element

*Glven that the linear density p and a

constant tension T along a slightly

T/ extensible string, the wave equation is
given as

0’y pd°y 18%
o°x T o2t ¢ 0%t



Ideal string constraints

In order for the wave equation to apply to the waves in a string, it must meet certain
constraints. For an ideal string, it iIs assumed that

1. The string is perfectly uniform with a constant mass per unit length and is perfectly
elastic with no resistance to bending.

2. The string tension is presumed to be large enough so that gravity can be neglected.

3. Small segments of the string are presumed to move transversely in a plane
perpendicular to the string, and that the displacements and slopes of segments of the

string are small.

http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/waveq.html#c2



How to obtain the wave equation

*The length of the string short section is given by dS which can be written as

2
dS = \/dx? + dy? = dx \/1 + (%) ~ dx; the slope is presumably small.

*By applying the Newton’s second law of motion, the horizontal force
components on the element are cancelled ;i.e., T cos(@ + df8) = T cos 6.

*And, the vertical force components results in

) (oY) |- 0%
TK@xjmx (axu‘p )



The wave equation of a wave on a string

*According to the definition of the partial derivative, we have

dy dy 9%y 0%y
(a) B (a) ] = Tdx g = P2y
x+dx x

T

Finally, the wave equation of a string is found to be

2 2 2
82y _P 82y - 12 82y ; C 1s the wave velocity of the
ox T ot ¢ ot wave on the string.




Solution of the wave equation :
travelling wave

*The solution of the wave equation is a function of the variables x and t.

*The right and left travelling (or progressive) waves can be written as
y(x,t)=asin(wt—kx); moving to the right: +x direction

y(x,t)=asin(wt+kx); moving to the left: -x direction

*Note
* Initially, a wave function is given as y = asin(awt, — kx,).
- t fo  Ata later time t (>t,), the wave function becomes y = asin(at - kx).
yTh‘:> _____ N e .. aty—kx, = ot —kx and this leads to x > x, . This suggests the

X, 5 X right moving waveform.

http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/wavsol.html#c3



The wave velocity and the particle
velocity

*Let’s consider the wave function : y = a sin(wt — kx).

2 d?2 = rmmmm e

______________________

d
*We found that —=yY= and Y=
By substituting these two equations into the wave equation, c = : clearly represents the wave velocity.
Wealso found that 2 =/ andZ =1 T
ot “---mmmmmm e 0X b
*This leads to the particle velocity % = —C g—i’ which is the product of the wave velocity and the gradient of

the wave profile preceded by a negative sign for a right-going wave.



Displacement y
y = asin(wt — kx)

Particle velocity 3 =-~% m /{ﬂ/

The magnitude and direction of the particle velocity % = —cg—z at any point x is shown by an arrow in
the right-going sine wave above




Characteristic impedance

*Any medium through which waves propagate will present an impedance to those waves.

*The impedance to progressive transverse waves Is defined as the transverse impedance,

- _ _lransverse force F
transverse velocity v

*The velocity v here is the particle velocity NOT the wave velocity.

For a harmonic force, the ratio of force to velocity describes how hard to move the object —
this depends both on how much inertia (e.g. linear density) the object has and on how
strong the restoring force (e.g. tension) is.

*The impedance, represented a medium characteristic, can be either real (for lossless case)
or complex (for loss case).



Characteristic impedance of a string

The string as a forced oscillator with a vertical force Fyexp(imt) driving at one end.

* For a minimum value of the particle

bt
F‘f velocity, the constant tension T in the
T string i1s balanced by the force at the end
of the string.
6 X

This gives

|

. 0
| Fpe'®t = —Tsinf ~ —Ttan§ = —T <6_y>' small
Fpe'=—-Tsing X



Characteristic impedance of a string
(cont.)

*If the displacement of the progressive waves is givenas ¥ = 4e

i(wt—kx)

*The minimum velocity of the string element is obtained from Fyel®t = —T (‘;_y>
X

*The velocity is found to be v=y=

-This leads to an alternative representation of the transverse string characteristic impedance
as the ratio of the tension to the wave velocity F T
Z e e —

v Cc

pc



Reflection and transmission of wave
on a string at a boundary

Transmitted wave

Waves on a string impedance

Incident wave > T )
R p,C, reflected and transmitted at
Reflected wave / P2C> the boundary x = 0 where the
1" picy string changes to impedance p,C,
x=0

Boundary conditionsat x =0 :

1. geometrical condition : displacement is the same immediately to the left and right at x = 0 for
all time (a continuity of the string)

2. dynamical condition : a continuity of the transverse force T(oyo/x) at x =0, and therefore a
continuous slope.



Incident, reflected and transmitted waves
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This suggests that at the boundary the incident wave is partly transmitted and
partly reflected due to different impedances of the media.



Determination of the reflection and
transmission amplitude coefficients

*According to the boundary conditions (at x =0 for all t)

BCL:Vyi+Yyr =Y

This condition suggests that there is a continuity of the displacement.

9, 9,
BC2: T—(y;+y,)=T =
aX(yl yr) ath

This condition suggests that the transverse forces have to be equal so as to prevent an
Infinite acceleration of an infinitesimal segment of string at the interface.



Reflection and transmission coefficients

. . . B, 7Z,-17,
Reflection coefficient of amplitude, — =
A, Zi+ 7,
A, 274

transmission coefficient of amplitude, — =
P A, 7+ 7,

*Note : these coefficients are independent of o and hold for waves of all frequencies.



Reflections of string at fixed end (Z = )
and at free end (Z = 0)

Py [}

At a fixed (hard) boundary, the At a free (soft) boundary, the restoring
displacement remains zero and the force is zero and the reflected wave has
reflected wave changes its polarity the same polarity (no phase change) as
(undergoes a 180° phase change) the incident wave



Example 1
A triangular shaped pulse of length | is reflected at the fixed end of the string on which
It travels (Z, = o). Sketch the shape of the pulse after a length (a) I/4  (b) 1/2

(c) 3l/4 and (d) | of the pulse has been reflected.

The pulse shape before reflection is given by the graph below:




How to obtain a reflected pulse

(a) Al=1/4
1 1 1
» — *
2
3. 0
_ « —L"»
© 2008 John Wiley & Sons, Ltd /
Phase reversal part of the zZ, | z,==
reflected wave



Solution

(a) Al=1/4

) Al=1/2
» e
3]
© 2008 John Wiley & Sons, Ltd * 4 > Z | Z,==w
Z | Z,=>
(c) Al=3i/4

) Al=1




An incident wave travelling from a | An incident wave travelling from a

high density (low wave speed) low density (high wave speed)

region towards a low density (high | region towards a high density (low

wave speed) region. wave speed) region.

« How do the polarities of the * How do the polarities of the
reflected and transmitted waves reflected and transmitted waves
compare to the polarity of the compare to the polarity of the

Incident wave? incident wave?



file:///C:/Users/racha/Downloads/P2018_19_Q1_Phys116_L09_Standing_waves_on_a_string.pdf

Example 2 : triangle wave

Consider the waveform shown below heading towards a boundary between two strings.

*Let string 1 have a mass per unit length of p; = 0.1 kg/m.
*Let string 2 have a mass per unit length of p, = 0.2 kg/m.
*Let the tension of the string be T =20 N.

a) Find the wave speed in each string.

b) Find the impedance of each string.

c¢) Find the shape of the reflected and transmitted waves and sketch them just after the incident wave
completely passed the boundary.
[ A=

« 5 String 1 String 2
w



https://www.yumpu.com/en/document/read/16791508/chapter-7-wave-equations-and-impedance-transverse-waves-in-a-

Solution

a) the wave speed in each string can be calculated from /7/, : ¢, =14.1 m/s and ¢, = 10 m/s.

b) the impedance of each string can be calculated from pc : p,¢,= 1.4 kg-m/s, p,c,= 2.0 Kkg-m/s.

c) The reflected and transmitted waves are triangle.

The amplitude of the reflected wave is found from B, Z;—-72, P1C1 — P2Co
= - B, =h = —0.18h
A, Z,+ 7, P1€1 + P2Cy
The width of the reflected wave becomes........................ to the width of the incident wave.
The amplitude of the transmitted wave Is found from 42 _ 24 > A, = h( 2P11 > = 0.82h
A, Z,+ 7, pP1C1 + P2Cy
The width of the transmitted wave 1s foundtobe.................. than the width of the incident wave.


https://www.yumpu.com/en/document/read/16791508/chapter-7-wave-equations-and-impedance-transverse-waves-in-a-

Reflection and transmission of energy

*Now, let’s consider what happens to the energy flow in a wave when it meets a boundary
between two media of different impedance values.

*Generally, the energy flow or the rate at which energy is being carried along a unit length,
mass p, of the string as a simple harmonic oscillator of maximum amplitude A with travelling
wave velocity of ¢ Is

(energy x velocity ) = %pa)z AC

This can be shown that the energy arriving at the boundary x = 0 i1s equal to the energy
leaving the boundary. In other words, the energy is conserved.



Derive the energy flow of a wave on a string

*Suppose the vertical displacement of a string element with mass dm is given by dy.

2
*The Kinetic energy (dK) of the string element is writtenas = dm (2’ ) =1 P (%) dx.

*The elastic potential energy (dU) is equal to the work done by the tension T to stretch the string and can be
writtenas dU = dW = T(ds — dx); where (ds — dx) represents the stretched length of the string under the
tension.

*Since ds = \/dxz +dy? = de1 + (%)2 ~ dx (1 + = (di) + ) ; therefore (ds —dx) = ( »

. . - 1 dy 2
Finally, the elastic potential energy dU = E T (E) dx.

1

2 2
*The total energy can be written as dE = - p (dy ) dx+ E T (Z—z) dx




Derive the energy flow of a wave on a
string (cont.)

. . _ 1 dy 2 1 dy 2
Recall the total energy : dE =>p (E) dx+ T (E) dx

*Suppose the displacement of the string element follows a harmonic function such as y = Asin(wt — kx).

2

2
-(%) = w?A%cos?(wt — kx) and (g—i’) = k?A%cos?(wt — kx)

*Let’s try to determine the total energy over a wavelength and then calculate the energy flow over a
period or power of the wave on a string!




Solution

*As the displacement is written in the harmonic function given in the previous slide, the total
energy becomes

dE =2 w?A%cos?(wt — kx) dx+ lTkZAzcosz(out — kx)dx
2P 2
2
‘Dueto T = c?p = (%) p, dE = p w?A%cos?*(wt — kx) dx

*Over a wavelength, the total energy is written as E;= fo'1 pw?A?cos*(wt — kx) dx =% pw2A?\.

Finally, the energy flow over a period T or power is given P = % = %paﬂAZc; c=A1/T.



The conservation of energy

All energy arriving at the boundary in the incident wave leaves the boundary in the reflected
and transmitted waves.

energy arriving = energy leaving

*Note : The proof requires the transformation of B, and A, to be in terms of A,.



The reflected and transmitted intensity
coefficients

5 2 2
Reflected Energy _ 2B _( B | _(Z41-2,
Incident Energy  z,A? | A Z,+Z,

Transmitted Energy _ Z,A?  4Z,Z,
Incident Energy 7, A’ (2, +Zz)2

*Note : if Z, = Z, no energy Is reflected and the impedances are said to be
matched.



Example 3

A transverse harmonic force of peak value 0.3 N and frequency 5 Hz initiates
waves of amplitude 0.1 m at one end of a very long string of linear density 0.01
kg/m. Determine the rate of energy transfer along the string and the wave
velocity. (ans : 3n/20 W and 30/t m/s)




solution

rate of energy transfer = 5 pcw?A?

 impedance Z = S =pc

Suppose y = Asin(wt — kx)
v =1y = wAcos(wt — kx)

o _F 0.3 03 N
CEEPCT AT Qrx5%x01) 7 om
1 1/0.3
- rate of energy transfer = Epca)zA2 =5\ (2m x 5)%(0.1)
~20"

q _Z (03 1) (30 m
an €= p \m/\0.01/ \nm S



The matching of Impedances

| i *Impedance matching represents a

very important practical problem in
the transfer of energy.

*The concept of impedance matching
IS to have the impedance change
slowly.

*An appropriate length and

. | Impedance of another string

Yi=Ap el | between two mismatched strings

' of e will eliminate energy reflection and
match the impedance.

—b. .
Vi =A1 ellot —kix)

— yi=Age
y,= 51 ell®t + k1x)




The analysis of the matching impedances

*To comply with the condition of matching impedances, the following ratio has to be unity,

Transmitted Energy  Z3A3

: — =1
Incident Energy 7,42

*To derive the impedance and the length of the inserted piece of the string, the boundary conditions are that y and
T(oy/ox) are continuous across the junctions x =0 and x = .

*This gives
Transmitted Energy  Z3A3 1 A5 415
Incident Energy ~ Z;4? 13A?  (r3+ 1)2cos2ky L+ (ry; + 193)% sin? k, [
_Z1Z2 _ 72 _
Where 11,753 = 2.2, 3 713



Conditions of impedance matching

-If the thickness of the coupling medium is chosen to be 4, /4 , the Z, can be written in terms of
Ziand Zzas...............

Transmitted Energy 4715 _
InCIdent Enel‘gy - (T'13+1)2 cos? kzl+(T12 +T'23)2 sin? kzl

Recall the matching condition:

By substituting [ = 4, /4 into the above equation and rearrange the equation by starting from

Z Z Z
4‘T13 = (le + T23)2 or 4‘_1 = (_1 + _2)
Z3 Zy Z3

* At the end after solving the quadratic equation of Z,, we found that

ZZ :"Z].ZB



Standing waves on a string with fixed ends

i( wt—kx)

*The displacement on the string at any pointis givenby Yy =ae
*With the boundary condition thaty = 0 at x =0 and x = | at all times, thus

Y = (—2i)aei(“’t) sin kx
*The complete expression for the displacement of the nth harmonic is given by
W X

Yn = 2a(—i)(coswpt +isinw,t)sin

W, X
C

C
“This may be expressed as Yn = (A, C0S@,t + B, sin @,t)sin



Derivation of the nth normal mode
standing wave function

*Recall the superposition of two travelling waves :  y = gel(@t=kx) 4 peilwt+kx)

By applying the 1tBC : @x =0,y =0; 0 = ae'!®t + be'®t; ». b = —a.
‘Thisleads to  y = gel(@t=kx) _ geilwt+kx) — gelwt(_2jsin kx)

*By applyingthe 2™ BC: @ x =1, y = 0; 0 = ae'®t(—2i sin kx).

*Thisleadsto kl = nm —» | = nA/2. This can be illustrated as ‘
k_)(..l_; n=3

*Therefore, a proper form of the nth normal mode standing wave function - \_‘/ n=2

: WnX
can be written as yn = 2a(—i)(cosw, t +isinw,t) sin%

and simplified to _ e < n=
Yn = (A, C0S @yt + By, sin w,t)sin —
C




Example 4

*Show that the total energy of the nth normal mode of a standing wave with a length of | is given

1
E, = merzl(A% + B2)

*Given that the wave function of nth normal is written as

: . WpX
Yn = (A, cosw, t + B, sinw, t) sin——



Solution

*The energy in each harmonic is composed of kinetic and potential energy.

E,, (kinetic + potential ) = E,, (kinetic) + E,, ( potential )

*Where (0 X

Yn = (A, cosm,t + B, sinw,t)sin




Homework #5

1. In the figure, media of 1impedances Z; and Z3 are separated by a
medium of intermediate impedance Z, and thickness A /4 mea-
sured in this medium. A normally incident wave in the first
medium has unit amplitude and the reflection and transmission
coefficients for multiple reflections are shown. Show that the total
reflected amplitude in medium [ which 1s

R+ TR (1 + R’ +r*R"™ ...

is zero at R = R’ and show that this defines the condition

(Note that for zero total reflection in medium 1, the first reflection
R 1s cancelled by the sum of all subsequent reflections.)

Z1 ZE
1
—_—
R
- >
TR’
-
TtR’ TR'r
| TRZS
TtR'2r TR 2r2
i
TR’3r2
TtR'3r2
i




2. The relation between the impedance Z and the refractive index n of a dielectric is given by Z = 1 /n.
Light travelling in free space enters a glass lens which has a refractive index of 1.5 for a free space

wavelength of 5.5 x 10~7 m. Show that reflections at this wavelength are avoided by a coating of
refractive index 1.22 and thickness 1.12 x 10~ m.




