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A typical representation of a  wave propagating in 

space
The propagating wave causing the 

individual oscillators in the medium 

to oscillate

Overall oscillation of the oscillators  with the 

same phase in the same plane forms the travelling 

plane wave.

Note : each color represents a different phase of 

the wave.

https://en.wikipedia.org/wiki/Plane_wave

Concept of Plane wave



Velocities in wave motion
•For a mechanical wave, the individual oscillators which make up the medium do 
not progress through the medium with the waves.

•The three velocities in wave motion  are

1. The particle velocity

2. The wave or phase velocity

3. The group velocity

•For a monochromatic wave, the group velocity and the wave velocity are 
identical.
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• Propagation of a light pulse in a dispersive medium. Note that the phase fronts of different 

frequency components propagate with different velocities, and the pulse propagates with the 

group velocity, which is lower than all the phase velocities;

• No temporal broadening due to the propagation taking place in a nondispersive medium.

Example of the group velocity

https://www.rp-photonics.com/group_velocity.html

https://www.rp-photonics.com/group_velocity.html
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• White light pulse 

consists of an infinite 

fine spectrum of 

frequencies and moving 

with a group velocity.

• The wave velocity of 

each wavelength in the 

group is different.

• The phenomenon is 

known as dispersion.

http://slideplayer.com/slide/10965793/

(GVD = Group Velocity 

Dispersion)



6http://www.koppglass.com/blog/optical-properties-of-glass-how-light-and-glass-interact/

Example of dispersion

http://www.koppglass.com/blog/optical-properties-of-glass-how-light-and-glass-interact/


The transverse wave equation on  a string

•A very short section of a uniform 
string has a vertical displacement.

•The wave equation relates the vertical 
displacement y to time t and position x.

•Given that the linear density  and a 
constant tension T along a slightly 
extensible string, the wave equation is 
given as
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Ideal string constraints
In order for the wave equation to apply to the waves in a string, it must meet certain 
constraints. For an ideal string, it is assumed that

1. The string is perfectly uniform with a constant mass per unit length and is perfectly 
elastic with no resistance to bending.

2. The string tension is presumed to be large enough so that gravity can be neglected.

3. Small segments of the string are presumed to move transversely in a plane 
perpendicular to the string, and that the displacements and slopes of segments of the 
string are small.
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http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/waveq.html#c2



How to obtain the wave equation 
•The length of the string short section is given by dS which can be written as 

𝑑𝑆 = 𝑑𝑥2 + 𝑑𝑦2 = 𝑑𝑥 1 +
𝑑𝑦

𝑑𝑥

2
≈ 𝑑𝑥; the slope is presumably small.

•By applying the Newton’s second law of motion, the horizontal force 
components on the element are cancelled ;i.e., 𝑇 cos 𝜃 + 𝑑𝜃 ≈ 𝑇 cos 𝜃.

•And, the vertical force components results in 
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The wave equation of a wave on a string
•According to the definition of the partial derivative, we have 

•Finally, the wave equation of a string is found to be
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; c is the wave velocity of the  

wave on the string.

𝑇
𝜕𝑦

𝜕𝑥
𝑥+𝑑𝑥

−
𝜕𝑦

𝜕𝑥
𝑥

= 𝑇𝑑𝑥
𝜕2𝑦

𝜕2𝑥
= 𝜌𝑑𝑥

𝜕2𝑦

𝜕2𝑡



Solution of the wave equation : 
travelling wave
•The solution of the wave equation is a function of the variables x and t.

•The right and left travelling (or progressive) waves can be written as

•Note : 
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( ) ( )

( ) ( )

, sin ;  moving to the right: +x direction

, sin ;  moving to the left: -x direction

y x t a t kx

y x t a t kx





= −

= +

http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/wavsol.html#c3

• Initially, a wave function is given as y = asin(t0 – kx0).

• At a later time t (>t0), the wave function becomes y = asin(t - kx).

•  t0 – kx0 = t – kx and this leads to x > x0  . This suggests the 

right moving waveform.

t t0



The wave velocity and the particle 
velocity

•Let’s consider the wave function : 𝑦 = 𝑎 sin 𝜔𝑡 − 𝑘𝑥 .

•We found that 
𝑑2

𝑑𝑡2
𝑦 = −𝜔2 𝑎 sin 𝜔𝑡 − 𝑘𝑥 and 

𝑑2

𝑑𝑥2
𝑦 = −𝑘2 𝑎 sin 𝜔𝑡 − 𝑘𝑥 .

•By substituting these two equations into the wave equation, 𝑐 =
𝜔

𝑘
clearly represents the wave velocity.

•We also found that 
𝜕𝑦

𝜕𝑡
= 𝜔 𝑎 cos 𝜔𝑡 − 𝑘𝑥 and 

𝜕𝑦

𝜕𝑥
= −𝑘 𝑎 cos 𝜔𝑡 − 𝑘𝑥 .

•This leads to the particle velocity 
𝜕𝑦

𝜕𝑡
= −𝑐

𝜕𝑦

𝜕𝑥
which is the product of the wave velocity and the gradient of 

the wave profile preceded by a negative sign for a right-going wave.
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The magnitude and direction of the particle velocity 
𝜕𝑦

𝜕𝑡
= −𝑐

𝜕𝑦

𝜕𝑥
at any point x is shown by an arrow in 

the right-going sine wave above
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Displacement

𝑦 = 𝑎 sin 𝜔𝑡 − 𝑘𝑥

Particle velocity



Characteristic impedance
•Any medium through which waves propagate will present an impedance to those waves.

•The impedance to progressive transverse waves is defined as the transverse impedance,

•The velocity v here is the particle velocity NOT the wave velocity.

•For a harmonic force, the ratio of force to velocity describes how hard to move the object –
this depends both on how much inertia (e.g. linear density) the object has and on how 
strong the restoring force (e.g. tension) is.

•The impedance, represented a medium characteristic, can be either real (for lossless case) 
or complex (for loss case).
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transverse force

transverse velocity

F
Z

v
= =



Characteristic impedance of a string
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The string as a forced oscillator with a vertical force F0exp(it) driving at one end.

𝐹0𝑒
𝑖𝜔𝑡 = −𝑇 sin 𝜃 ≈ −𝑇 tan𝜃 = −𝑇

𝜕𝑦

𝜕𝑥
; small 𝜃

• For a minimum value of the particle 

velocity, the constant tension T in the 

string is balanced by the force at the end 

of the string.

• This gives



Characteristic impedance of a string 
(cont.)
•If the displacement of the progressive waves is given as

•The minimum velocity of the string element is obtained from 

•Therefore, the displacement at x = 0  is 

•The velocity is found to be 

•This leads to an alternative representation of the transverse string characteristic impedance  
as the ratio of the tension to the wave velocity
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𝑦 = 𝐴𝑒𝑖 𝜔𝑡−𝑘𝑥

𝑦 =
𝐹0
𝑖𝜔

𝑐

𝑇
𝑒𝑖 𝜔𝑡

𝑣 = ሶ𝑦 = 𝐹0
𝑐

𝑇
𝑒𝑖 𝜔𝑡

𝑍 =
𝐹

𝑣
=
𝑇

𝑐
= 𝜌𝑐

𝐹0𝑒
𝑖𝜔𝑡 = −𝑇

𝜕𝑦

𝜕𝑥



Reflection and transmission of wave 
on a string at a boundary

Boundary conditions at x = 0 :

1. geometrical condition : displacement is the same immediately to the left and right at x = 0 for 
all time (a continuity of the string) 

2. dynamical condition : a continuity of the transverse force T(y/x) at  x = 0, and therefore a 
continuous slope.
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Waves on a string impedance   

1c1  reflected and transmitted at 

the boundary x = 0 where the 

string changes to impedance 2c21c1

2c2



Incident, reflected and transmitted waves
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( )

( )

( )

Incident wave : ,

Reflected wave : ,

Transmittedwave : ,

i

r

t

y x t

y x t

y x t

=

=

=

( )

( )

( )

1 1

1 1

2 2

exp

exp

exp

A t k x

B t k x

A t k x







−

+

−

This suggests that at the boundary the incident wave is partly transmitted and 

partly reflected due to different impedances of the media.



Determination of the reflection and 
transmission amplitude coefficients
•According to the boundary conditions (at x =0 for all t)
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( ) ( ) ( )1 1 2
1 1 2

BC 1 :  

           

i r t

i t k x i t k x i t k x

y y y

A e B e A e
  − + −

+ =

+ =

( )

1 1 2
1 1 2

BC 2 :  

           - -

i r tT y y T y
x x

T T T
A B A

c c c
  

 
+ =

 

+ =

This condition suggests that there is a continuity of the displacement.

This condition suggests that the transverse forces have  to  be equal  so as to prevent an 

infinite acceleration of an infinitesimal segment of string  at the interface.



Reflection and transmission coefficients

•Note : these coefficients are independent of  and hold for waves of all frequencies.
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Reflection coefficient of amplitude,
𝐵1
𝐴1

=
𝑍1 − 𝑍2
𝑍1 + 𝑍2

transmission coefficient of amplitude,
𝐴2
𝐴1

=
2𝑍1

𝑍1 + 𝑍2



Reflections of string at fixed end (Z = ) 
and at free end (Z = 0)

21https://www.acs.psu.edu/drussell/demos/reflect/reflect.html

At a fixed (hard) boundary, the 

displacement remains zero and the 

reflected wave changes its polarity 

(undergoes a 180o phase change)

At a free (soft) boundary, the restoring 

force is zero and the reflected wave has 

the same polarity (no phase change) as 

the incident wave
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Example 1
A triangular shaped pulse of length l is reflected at the fixed end of the string on which 

it travels (Z2 = ). Sketch the shape of the pulse after a length (a) l/4    (b)  l/2    

(c) 3l/4     and    (d) l of the pulse has been reflected.



How to obtain a reflected pulse

23

Phase reversal part of the 

reflected wave
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Solution
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An incident wave travelling from a 

high density (low wave speed) 

region towards a low density (high 

wave speed) region.

An incident wave travelling from  a 

low density (high wave speed) 

region towards a high density (low 

wave speed) region.

• How do the polarities of the 

reflected and transmitted waves 

compare to the polarity of the 

incident wave?

• How do the polarities of the 

reflected and transmitted waves 

compare to the polarity of the 

incident wave?

file:///C:/Users/racha/Downloads/P2018_19_Q1_Phys116_L09_Standing_waves_on_a_string.pdf

file:///C:/Users/racha/Downloads/P2018_19_Q1_Phys116_L09_Standing_waves_on_a_string.pdf


Example 2 : triangle wave
•Consider the waveform shown below heading towards a boundary between two strings.

•Let string 1 have a mass per unit length of 1 = 0.1 kg/m.

•Let string 2 have a mass per unit length of 2 = 0.2 kg/m.

•Let the tension of the string be T = 20 N.

a) Find the wave speed in each string.

b) Find the impedance of each string.

c) Find the shape of the reflected and transmitted waves and sketch them just after the incident wave 
completely passed the boundary.

26https://www.yumpu.com/en/document/read/16791508/chapter-7-wave-equations-and-impedance-transverse-waves-in-a-

w

h

String 1 String 2

https://www.yumpu.com/en/document/read/16791508/chapter-7-wave-equations-and-impedance-transverse-waves-in-a-


Solution
a) the wave speed in each string can be calculated from Τ𝑇 𝜇 :  c1 = 14.1 m/s and c2 = 10 m/s.

b)  the impedance of each string can be calculated from c : 1c1 =   1.4   kgm/s, 2c2 =   2.0   kgm/s.

c) The reflected and transmitted waves are triangle. 

The amplitude of the reflected wave is found from

The width of the reflected wave becomes………............... to the width of the incident wave.

The amplitude of the transmitted wave is found from

The width of the transmitted wave is found to be………………than the width of the incident wave.   
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𝐵1
𝐴1

=
𝑍1 − 𝑍2
𝑍1 + 𝑍2

→ 𝐵1 = ℎ
𝜌1𝑐1 − 𝜌2𝑐2
𝜌1𝑐1 + 𝜌2𝑐2

= −0.18ℎ

𝐴2
𝐴1

=
2𝑍1

𝑍1 + 𝑍2
→ 𝐴2 = ℎ

2𝜌1𝑐1
𝜌1𝑐1 + 𝜌2𝑐2

= 0.82ℎ

https://www.yumpu.com/en/document/read/16791508/chapter-7-wave-equations-and-impedance-transverse-waves-in-a-

equal

narrower

https://www.yumpu.com/en/document/read/16791508/chapter-7-wave-equations-and-impedance-transverse-waves-in-a-


Reflection and transmission of energy
•Now, let’s consider what happens  to the energy flow in a wave when it meets a boundary 
between two media of different impedance values.

•Generally, the energy flow or the rate at which energy is being carried along a unit length, 
mass , of the string as a simple harmonic oscillator of maximum amplitude A with travelling 
wave velocity of c is  

•This can be shown that the energy arriving at the boundary x = 0 is equal to the energy 
leaving the boundary. In other words, the energy is conserved.
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( ) 2 21

2
energy velocity A c =



Derive the energy flow of a wave on a string

•Suppose the vertical displacement of a string element with mass dm is given by  𝑑𝑦.

•The kinetic energy (𝑑𝐾) of the string element is written as    
1

2
𝑑𝑚

𝑑𝑦

𝑑𝑡

2
=

1

2


𝑑𝑦

𝑑𝑡

2
𝑑𝑥.

•The elastic potential energy (𝑑𝑈) is equal to the work done by the tension T to stretch the string and can be 
written as  𝑑𝑈 = 𝑑𝑊 = 𝑇 𝑑𝑠 − 𝑑𝑥 ; where  𝑑𝑠 − 𝑑𝑥 represents the stretched length of the string under the 
tension.

•Since 𝑑𝑠 = 𝑑𝑥2 + 𝑑𝑦2 = 𝑑𝑥 1 +
𝑑𝑦

𝑑𝑥

2
≈ 𝑑𝑥 1 +

1

2

𝑑𝑦

𝑑𝑥

2
+⋯ ; therefore  𝑑𝑠 − 𝑑𝑥 =

1

2

𝑑𝑦

𝑑𝑥

2

•Finally, the elastic potential energy 𝑑𝑈 =
1

2
𝑇

𝑑𝑦

𝑑𝑥

2
𝑑𝑥.

•The total energy can be written as  𝑑𝐸 =
1

2


𝑑𝑦

𝑑𝑡

2
𝑑𝑥+

1

2
𝑇

𝑑𝑦

𝑑𝑥

2
𝑑𝑥
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dx

dy

dx

before

after



Derive the energy flow of a wave on a 
string (cont.)

•Recall the total energy : 

•Suppose the displacement of the string element follows a harmonic function such as 𝑦 = 𝐴𝑠𝑖𝑛 𝜔𝑡 − 𝑘𝑥 .

•
𝜕𝑦

𝜕𝑡

2
= 𝜔2𝐴2𝑐𝑜𝑠2 𝜔𝑡 − 𝑘𝑥 and 

𝜕𝑦

𝜕𝑥

2
= 𝑘2𝐴2𝑐𝑜𝑠2 𝜔𝑡 − 𝑘𝑥

•Let’s try to determine the total energy over a wavelength and then calculate the energy flow over a 
period or power of the wave on a string!
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𝑑𝐸 =
1

2


𝑑𝑦

𝑑𝑡

2
𝑑𝑥+

1

2
𝑇

𝑑𝑦

𝑑𝑥

2
𝑑𝑥



Solution
•As the displacement is written in the harmonic function given in the previous slide, the total 
energy becomes

•Due to 𝑇 = 𝑐2𝜌 =
𝜔

𝑘

2
𝜌, 𝑑𝐸 =  𝜔2𝐴2𝑐𝑜𝑠2 𝜔𝑡 − 𝑘𝑥 𝑑𝑥

•Over a wavelength, the total energy is written as 𝐸𝜆= 0
𝜆
𝜔2𝐴2𝑐𝑜𝑠2 𝜔𝑡 − 𝑘𝑥 𝑑𝑥 =

1

2
𝜔2𝐴2.

•Finally, the energy flow over a period T or power is given  𝑃 =
𝐸𝜆

𝑇
=

1

2
𝜔2𝐴2𝑐; 𝑐 = Τ𝜆 𝑇.
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𝑑𝐸 =
1

2
 𝜔2𝐴2𝑐𝑜𝑠2 𝜔𝑡 − 𝑘𝑥 𝑑𝑥+

1

2
𝑇𝑘2𝐴2𝑐𝑜𝑠2 𝜔𝑡 − 𝑘𝑥 𝑑𝑥



The conservation of  energy
•All energy arriving at the boundary in the incident wave leaves the boundary in the reflected 
and transmitted waves.

•Note : The proof requires the transformation of B1 and A2 to be in terms of A1.
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2 2 2 2 2 2
1 1 1 1 1 1 2 2 2

2 2 2 2 2 2
1 1 1 1 2 2

2 2 2 2
1 1 1 1

energy arriving  = energy leaving

1 1 1

2 2 2

1 1 1

2 2 2

1 1

2 2

c A c B c A

Z A Z B Z A

Z A Z A

     

  

 

= +

= +

=



The reflected and transmitted intensity 
coefficients

•Note : if Z1 = Z2 no energy is reflected and the impedances are said to be 
matched.
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( )

2 22
1 1 1 1 2

2
1 1 21 1

2
2 2 1 2

2 2
1 1 1 2

Reflected Energy
= =  

Incident Energy

4Transmitted Energy
=

Incident Energy

Z B B Z Z

A Z ZZ A

Z A Z Z

Z A Z Z

   −
=   

+   

=
+



Example 3
A transverse harmonic force of peak value 0.3 N and frequency 5 Hz initiates 
waves of amplitude 0.1 m at one end of a very long string of linear density 0.01 
kg/m. Determine the rate of energy transfer along the string  and the wave 
velocity. (ans : 3/20 W and 30/ m/s)
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solution

35

rate of energy transfer =
1

2
𝜌𝑐𝜔2𝐴2

∵ impedance Z =
𝐹

𝑣
= 𝜌𝑐

Suppose 𝑦 = 𝐴 sin 𝜔𝑡 − 𝑘𝑥
𝑣 = ሶ𝑦 = 𝜔𝐴 cos 𝜔𝑡 − 𝑘𝑥

∴ 𝑧 = 𝜌𝑐 =
𝐹

𝜔𝐴
=

0.3

2𝜋 × 5 × 0.1
=
0.3

𝜋

N

m
⋅ s

∴ rate of energy transfer =
1

2
𝜌𝑐𝜔2𝐴2 =

1

2

0.3

𝜋
2𝜋 × 5 2 0.1 2

=
3

20
𝜋W

and 𝑐 =
𝑍

𝜌
=

0.3

𝜋

1

0.01
=

30

𝜋

m

s



The matching of impedances
•Impedance matching represents a 
very important practical problem in 
the transfer of energy.

•The concept of impedance matching 
is to have the impedance change 
slowly.

•An appropriate length and 
impedance of another string  
between two mismatched strings 
will eliminate energy reflection and 
match the impedance.

36



The analysis of the matching impedances

•To comply with the condition of matching impedances, the following ratio has to be unity,

•To derive the impedance and the length of the inserted piece of the string, the boundary conditions are that y and 
T(y/x) are continuous across the junctions x = 0 and x = l. 

•This gives

•Where 𝑟12𝑟23 =
𝑍1

𝑍2

𝑍2

𝑍3
=

𝑍1

𝑍3
= 𝑟13

37

Transmitted Energy

Incident Energy
=
𝑍3𝐴3

2

𝑍1𝐴1
2 = 1

Transmitted Energy

Incident Energy
=
𝑍3𝐴3

2

𝑍1𝐴1
2 =

1

𝑟13

𝐴3
2

𝐴1
2 =

4𝑟13
𝑟13 + 1 2 cos2 𝑘2 𝑙 + 𝑟12 + 𝑟23

2 sin2 𝑘2 𝑙



Conditions of impedance matching
•If the thickness of the coupling medium is chosen to be            , the  Z2 can be written in terms of 
Z1 and Z3 as……………

•Recall the matching condition: 

•By substituting 𝑙 = Τ𝜆2 4 into the above equation and rearrange the equation by starting from 

4𝑟13 = 𝑟12 + 𝑟23
2 𝑜𝑟 4

𝑍1

𝑍3
=

𝑍1

𝑍2
+

𝑍2

𝑍3

2

• At the end after solving the quadratic equation of Z2, we found that
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2 4

2 1 3Z Z Z=

Transmitted Energy
Incident Energy

=
4𝑟13

𝑟13+1
2 cos2 𝑘2𝑙+ 𝑟12+𝑟23

2 sin2 𝑘2𝑙
=1



Standing waves on a string with fixed ends

•The displacement on the string at any point is given by

•With the boundary condition that y = 0 at x  = 0 and x = l at all times, thus

•The complete expression for the displacement of the nth harmonic is given by

•This may be expressed as
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( ) ( )i t kx i t kx
y ae be

 − +
= +

( ) ( )
2 sin

i t
y i ae kx


= −

( )( )2 cos sin sin n
n n n

x
y a i t i t

c


 = − +

( )cos sin sin n
n n n n n

x
y A t B t

c


 = +



Derivation of the nth normal mode 
standing wave function 
•Recall the superposition of two travelling waves :

•By applying the 1st BC : @x = 0, y = 0;  0 = 𝑎𝑒𝑖𝜔𝑡 + 𝑏𝑒𝑖𝜔𝑡; ∴ 𝑏 = −𝑎.

•This leads to 

•By applying the 2nd BC : @ x = l, y = 0; 0 = 𝑎𝑒𝑖𝜔𝑡 −2𝑖 sin 𝑘𝑥 .

•This leads to 𝑘𝑙 = 𝑛𝜋 → 𝑙 = Τ𝑛𝜆 2.  This can be illustrated as

•Therefore, a proper form of the nth normal mode standing wave function

can be written as

and simplified to 

40

𝑦 = 𝑎𝑒𝑖 𝜔𝑡−𝑘𝑥 + 𝑏𝑒𝑖 𝜔𝑡+𝑘𝑥

𝑦 = 𝑎𝑒𝑖 𝜔𝑡−𝑘𝑥 − 𝑎𝑒𝑖 𝜔𝑡+𝑘𝑥 = 𝑎𝑒𝑖𝜔𝑡 −2𝑖 sin 𝑘𝑥

l

𝑦𝑛 = 2𝑎 −𝑖 cos𝜔𝑛 𝑡 + 𝑖 sin𝜔𝑛 𝑡 sin
𝜔𝑛𝑥

𝑐

( )cos sin sin n
n n n n n

x
y A t B t

c


 = +



Example 4
•Show that the total energy of the nth normal mode of a standing wave with a length of l is given 

𝐸𝑛 =
1

4
𝑚𝜔𝑛

2 𝐴𝑛
2 + 𝐵𝑛

2

•Given that the wave function of nth normal is written as

41

𝑦𝑛 = 𝐴𝑛 cos𝜔𝑛 𝑡 + 𝐵𝑛 sin𝜔𝑛 𝑡 sin
𝜔𝑛𝑥

𝑐



Solution
•The energy  in each harmonic is composed of kinetic and potential energy.

•Where  
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( ) ( ) ( )

( )

2
2

0 0

2 2 2

kinetic + potential kinetic potential

1 1
                                      =

2 2

1
                                     =

4

                                 

n n n

l l
n

n

n n n

E E E

y
y dx T dx

x

l A B



 

= +

 
+  

 

+

 

( )2 2 21
    =

4
n n nm A B +

( )cos sin sin n
n n n n n

x
y A t B t

c


 = +



Homework #5

1.
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2.
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